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'LETTER TO THE EDITOR 

New class of conditionally exactly solvable potentials . .. in 
qu+tum mechanics 
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Abstract Motivated by an idea of Dum we obtain ai& class of one-dinknsionalmoditionally 
exactly solvable potentials for which the entire spectra can be obtained in an algebraic maom 
provided one ofthe potential parameters is assigned a fued negative value. II is shown that using 
shape-invariant potentials as input, one may gene& different Elasses of such phentials even in 
moffi than one dimension. We also illustrate that WKB and supersymmetry inspired WKE. methods 
provide very good approximations for these potentials with the latter doing comparatively better, 

Interest in obtaining exact solutions for non-relativistic quantum potentids has been intense 
in recent times. One of the major reasons behind thii is the fact that knowledge of 
exact solutions can be used as a basis to perform a variety of perturbative as well as 
non-perturbative approximation methods for the non-exact potentials which occur in many 
branches of physics. These investigations have been further stimulated by the observation 
of a nice connection between the factorization method [14] based on supersymmetric 
quantum mechanics (SUSYQM) [5-71 and second-order differential equations. A new class of 
potentials, known as quasi-exactly solvable (QES) potentials [8-111, has also been discovered 
for which only a finite number of eigensetes are h o w n  analytically under certain constraint 
conditions among the potential parameters while the remaining ones have to be obtained 
numerically. Such analytic2 solutions are useful in testing~the accuracy of the eigenvalues 
obtained by numerical integration methods. Besides, they are also known to.reveal some 

Very recently, Dutra 1121 has discovered adiffemt clvs  of quantum potenti&.known as 
conditionally, exactly soluble (as) potentials for which exact eigenva!u& and eigehfunctions 
of all quantum states can be obtained provided one of the potential pakuneters, is &signed 
a fixed negative value through a mapping'pr*&e. In his approach, only simplk power- 
law-be transforhations ' have been used .& the mapping function. , At this stage, it 
is quite 'natural to enquire whether one c& generate different ClasSes of CES p6tentials 
invoking more complex mapping functions. The purpose of this letter is to demonstrate 
that with the help of a shapeinvariant class of exactly solvable potentials [4] and using 
aanscendental mapping functions, one may obtain new CES potentials which are quite 
different from the standard quantum potentials. Here we present the steps for obtaining 
two one-dimensional CES potentials. However, it is clear that similar potentials in higher 
dimension can also be constructed following our procedure. For the sake of completeness, 
we also present numerical comparisons,of the eigenvalues obtained from the leading-order 
WKB and supersymmetry-inspired w t i ~  (SWKB) quantization conditions. 

interesting'group theoretic structure [9,10].. , . '. . 
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To obtain one-dimensional CES potentials, we begin with the Schrodinger equation (in 
units off2 =2m = 1) 

for a potential V(x). Invoking a transformation of the independent variable 

x = f fu) (2) 

and redefining the wavefunction as 

* ( x )  = " X C U )  (3) 

where the prime denotes differentiation with respect to the variable U, we obtain a 
transformed ScWinger  equation 

One now chooses any exactly solvable (a) potential as VT and the idea is to find the 
transformation functions f(u) such that one would have new analytically solvable potentials 
V(x). Obviously, the non-hivial part is the proper choice of f(u) so that V(x) as well as 
energy eigenvalues and eigenfunctions can be expressed in a closed form. 

For o w  purpose, we shall use the shapinvahant class of potentials [4] as the input 
information. As for illustration, we consider the mapping fundon  in (2) as 

x = f ( u )  = log(sinhu) or sinh u = ex. 0) 

Obviously, the domain of the variable U is 0 4 U < m. corresponding to -m < x 4 m. 
In this case AV(u) turns out to be 

AV@) = -a c o ~ h z u  - 2 + itanh'u. (8) 

We should mention at this point that two different choices can be made for V(f(u)) 
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Case (a): If we now choose 

equations (3, (8) and (9) lead to 

V ~ ( U ) = - - B ~ O t h ~ - ( E f ~ ) c o ~ ~ h ~ u  

and 

ET = -A + t + E.  (11) 

However VT(U) as given by equation (IO) is an exactly solvable potential with well known 
energy eigenvalues and eigenfunctions. In fact, from [4,13] we obtain for a potential 

V ~ ( u ) = - 2 b ~ 0 t h u + a ( a - l ) c o s e c h ~ u  b > a 2 , a > 0  (12) 

the energy eigenvalues as 

and the comsponding eigenfunctions x ( U )  are given by 

I (Y) (14) x(u) = (y - 1)-(a+Jw2 ( y  + I)-(l?h+A)/Zp-(u-n+A,~-n-A) 

where y = cothu, A = b/(n+l) and P,?(y) are Jacobi polynomials. Comparing equations 
(IO) and (12), we get 

2 b = B  a - i -  '-&E. (15) 

Comparing (11) and (13) and using (15). we obtain 

. .  , .  

in which E. = -&,,, E, > 0. This after simple manipulation leads to the cubic equation 
. 

2(n + ;).+2 t: I5In + (A - $En 4 [4(n + i)j - Z(n s :)(A - ;)jG . ~ . .  . 
+ [(n + {)4 - (n + ;)'(A - + B2/4] = 0 (17) 

from where one obtains E,, for given A and B .  From the three roots we can discard 
h+o by demanding that the spectrum must reduce to the standard one for B = 0. Once the 
eigenvalues have been determined, the corresponding eigenfunctions +,,(x) arc immediately 
obtained by using equations (31, (7) and (15). We obtain . .  .. I . 1 .  . 

I Y) (18) $@) =,"cy - 1)-W-W4 (y + ~ ) - ' C / Z - ~ / ~ E ' ~ ( B / ~ C - C . - B J ~ S - S ) (  

where y = (1 + exp(-2x)) and c = n + 1/2+&. 

cm potential 
Equation (17) and (18) give the energy eigenvalue and the eigenfunctions of our first 

which is essentially the same as (9) in terms of the original variable. 
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Care (b): Unlike (9), one may consider 

V( f (u ) )=AtanhZu~  Bsechu-:tanh4u. 

Using (8) and (20) in equation (S), one obtains 

VT(U) = - B cosech U coth U - ( E  + a )  cosech’ U (21) 

(22) 3 ET = E + 3 - A. 

Again VT(U) in (21) is p ES potentfal. It is known that for the potkntial (b > U >,O) . .  . 
/ /  i _ .  

VT(U) = [U(U + 1) + b21 cosechz U - b(2a + 1) cothu cosFhu (23) 

the energy eigenvalues and eigenfunctions are given by [4,13] 

(24) 

n Lv) (25) 

2 ET = -(U -n) 

xn(U) = (y - I)(b-4)e(y + l)-(b+n)12p(b-o-l/Z,b-o-lj2) 

where y = coshu. On compadng eq&tions (23) and (24) with (21) and (22), we obtain 
(E. = -E“, sn > 0) 

2b = ,/P+ ,/a 2a = ,/-- ,/a - i (26) 

and the energy eigenvalues for the potential (20) are given in terms of A and E by , .  , .  

From here one again obtains a cubic equation for E, and as before one can reject two 
roots by demanding that the spechum be reduced to the standard form for B = 0. Once 
the eigenvalues have been determined, the eigenfunctions @&) are immediately obtained 
by using equations (3), (7) and (25). Rewriting (21) in terms of the original variable n, we 
get our second CES potential in one dimension: 

Our new potentials (19) and (28) are quite different from-the standard potentials used in 
quantum problems. It is interesting to note that, in both cases, the Wid terms are identical 
and have the same fixed negative coefficient (-:). We suspect that this may have a subtle 
connection to the complete solvability of the SchrBdinger equation for these two potentials. 

Thus we have obtained two new CES potentials for which the entire eigenspectrum can 
be obtained analytically. 

The SWKB method 1141 gives the exact energy values in the lowest order for all shape- 
invariant potentials [IS], while the WKB method in the lowest order is able to give the exact 
result only for the harmonic oscillatdr and the Morse potential. It is of interest to enquire as 
to how good the WKB and the SWKB approximations are in the case of these two potentials. 
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TO this end we. have computed’the specr”’numerically by using’tlie,lowest-order WKB 

quantization condition . . .  

as well as the lowest-order s w p  condition . , 

(30) / “ m & = n n  ’ n=0,1;2,: . .  : .~ ’. 
~ 

d 

where W ( x )  = -@&x)/@&). For the two potentials it .is easily seen that 

The WKB and the SWKB eigenvalues for the two potentials are compared with the 
corresponding exact answers in tables 1 and 2. The two potentials have also been plotted 
in figures 1 and 2. From the tables we find that both WKB and the SWKB are very good 
approximations for these potentials with SWKB doing slightly better than WKB. Further, it 
will be noticed in table 2 that the SWKB results are identical to the exact ones within the 
accuracy of the calculation. This raises the intriguing question of whether the SWKB is 
exact [16] for the potential (28). Unfortunately, the integral involved is too complicated to 
resolve the question analytically. 

Table 1. Exact, WKB and SWKB eigenenergies for the potential (19) with A = 200 and B = 200. 
Percentage mrs have been calculated to three decimal places to bring out the small ermm in 
the SWKB values. 
~ 

Percentage Percentage 
n =act WKB ermr SWKB ermr 
0 -45.04372 -44.91080 -0.295 
1 -35.67240 -35.5558 -0.327 -35.67225 ~ 0 . W  
2 -27.491 64 -27.39039 -0.368 -27.491 39 -0.001 
3 -20.46221 -20.37604 -0.421 -20461 92 -0.001 
4 -14.54556 -14.47396 -0.492 -1454526 -0.002 
5 -9.70408 -9.64657 -0.593 -9.703 SO -0.033 
6 -5.90164 -5.85775 -0.744 -5901+0 -0.W 
7 ,  -3.10498 -3.07433 -0.987 -3.10481 -0.036 
8 -1,29462 -1.27728 -1.339 -1.29451 -0@8 

One can significantly increase the class of as potentials by using the ideas of 
supersymmetric quantum mechanics 141. In particular, for both potentials (19) and (28) one 
can immediateIy wnte down supersymmetxy partner potentials V+(x) = W2(x)  + W’(x) 
which have the same spectrum except that the ground state is missing. The corresponding 
eigenfunctions of V+(x) can be obtained from those of equations (19) and (28) by the 
formula [4] 
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Table 2. ha. WKB and sWKB eigenenergies for the potential (28) with A = -MO and B 400. 
No percentage emn .ne shown for SWKB values as these are almost identical to the exad values. 
except for a diffmnce of 1 or 2 in the last significant figure. 

Percentage 
n Exact WKB emr SWKB 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 

-617.3312 
-601.7929 
-587.4669 
-5743283 
-5623521 
-5515138 
-541.7889 
-533.1534 
-5255838 
-519.0567 
-5135496 
-509.0405 
-505.5084 
-5029346 
-501.3113 

-617.1961 
-M)1.6681 
-587.3521 

-562.2568 
-551.4278 
-541.7121 
-533.0857 
-525.5248 
-519.w 
-513.5078 
-509.w69 
-505.4829 
-502.9171 
-501.3018 

-574.q3 

-0.022 
-0.021 
-0.020 
-0.018 
-0.017 
-0.016 
-0.014 
-0.013 
-0.01 1 
,-0.010 
-0.MJ8 
-0.007 
-0.005 
-0.003 
-0.002 

-601.7928 
-587.4668 
-5743282 
-562.3520 
-5515136 
-541.7887 
-533.1532 
-525.5836 
-519.0565 
-513.5495 
-509.0404 

-502.9345 
-501.3112 

-505.5083 

X 

-500 

-550 

-2 

-600 

-650 
-3 . - 1 ,  1 3 5 

x 

Figure 1. The potential (19) for A = 200 md,B = 200. Figure 2. The potential (28) for A = -500 and 
B = 500. For the existence of a well in this potential 
A should be negative and B < IAl. 

Furthermore, corresponding to the two CRS potentials (19) and (28), one can also write 
down one continuous parameter family of potentials with identical specmm and identical 
scattering matrix [ 171 but different (but known) eigenfunctions in t k s  of those of potentials 
(19) and (28). These potentials are given by 
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where A z 0 or < -1 but arbitrary otherwise and 

I W =  1; rbiW dy 

L113 

(35) 

with $0 being the ground-state-normalized eigenfunction of the potential (19) or (28). All 
these extensions obviously also apply to the two cE.5 potentials discovered by Dutra [IZ]. 

Finally, one could use other ES potentials as VT and discover further new e~ potentials. 
This is being pursued and will be reported later along with other formal aspects of the CES 
potentials. 

RD is grateful to the Department of physics, University of Ottawa for warm hospitality. 
YPV acknowledges partial financial support from the Natural Sciences and Engineering 
Research Council of Canada. 
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